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Abstract

In this article, the accuracy and the stability of 2D spectral volume schemes are studied by means of an analysis of the
wave propagation properties. It is shown that several SV partitions suffer from a weak instability. Stable schemes with
lower dispersion and diffusion errors are proposed. Numerical tests show an important improvement in the accuracy of
the fourth-order scheme.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The spectral volume (SV) method was proposed a few years ago as an alternative for the discontinuous
Galerkin (DG) method [12–15], in a paper by Wang [1]. Further development of the SV method for 2D
and for nonlinear hyperbolic systems, such as the Euler equations, was then reported in subsequent papers
by Wang et al. [2–4]. The extension to 3D for linear systems was described in Liu et al. [5]. The method
was also applied to the 2D Navier–Stokes equations in Sun et al. [6]. With the SV method, each cell (SV)
is subdivided into smaller cells that are called control volumes (CVs). The method then solves for CV-averaged
values of the solution. It is related to the finite volume (FV) method in the sense that the residuals correspond-
ing to each CV are evaluated as the sum of the fluxes through the CV boundaries. However, the stencils for the
fluxes through each face are always uniquely defined with the SV method. The FV method does not enjoy this
property. Consequently, to achieve orders of accuracy higher than two on unstructured meshes, searching
operations are needed to find a non-singular stencil for the flux through each face. This leads to prohibitively
long CPU-times or, if the stencils are stored, memory requirements that are generally too large. The SV
method can also be interpreted as a Petrov–Galerkin method. As such, like with the DG method, two different
terms can be distinguished in the residuals corresponding to a cell, or SV. The first term could be called a
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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‘volume’ term, although it contains only integrals over internal surfaces in the SV, while the second term is a
boundary term that contains the fluxes through the external boundaries of the SV and where a Riemann flux
has to be used to handle the discontinuity in the solution variables. Comparisons between the SV and DG
methods can be found in Sun and Wang [8] and in Zhang and Shu [9]. Both methods are high-order accurate
on unstructured grids. Also, they both have compact stencils, requiring only the immediate cell neighbours to
evaluate the residuals in a certain cell. This makes these methods easily parallelizable. In [8], a comparison of
the CPU-times needed to evaluate the residual in one triangular cell was given, for second-, third- and fourth-
order accurate schemes. It was found that in the scalar case, the SV schemes were consistently faster than the
DG schemes of the same order of accuracy. For the Euler equations, the second-order SV scheme was signif-
icantly faster, but in the third- and fourth-order accurate cases, there was little difference (<12%). The third-
order SV scheme was still faster, but for fourth-order accuracy, DG needed less CPU-time. The reason for this
is that the SV method has more Riemann solver calls in that case. For a given cell size, the error magnitude is
generally smaller with the DG method. The SV method on the other hand generally allows larger time steps
and offers the possibility of applying a limiting procedure on a control volume level, which gives the method a
higher resolution for discontinuities in the solution.

For orders of accuracy higher than two, the partitioning of the SVs into CVs is not uniquely defined. It is of
utmost importance to define suitable partitions, since the accuracy and the stability of the SV method are
influenced greatly by this definition. In previous work by Wang et al. [2,3], Liu et al. [5] and Chen [10,11],
SV partitions were designed using the Lebesgue constant criterion. This constant is a measure for the quality
of the spectral volume interpolation, since a smaller Lebesgue constant corresponds to a lower upper bound
for the interpolation error, as was shown in [2]. As such, the Lebesgue constant criterion says that SV parti-
tions should be designed to yield as low a Lebesgue constant as possible.

In [20], a study of the wave propagation properties of the 1D SV method and the influence of the SV par-
titioning on them was presented. Good wave propagation properties are very important for applications such
as computational aeroacoustics (CAA) and the simulation of turbulent flows, with for instance large eddy sim-
ulation (LES) or direct numerical simulation (DNS). The wave propagation properties associated with a com-
bination of a SV partition and a Riemann flux are not only a measure for the accuracy of the scheme, but they
also hold information about the stability. More concretely, the diffusion error should always be non-positive,
since a positive diffusion error corresponds to an exponentially growing, or unstable, solution. In [16], Hu
et al. describe a wave propagation analysis for the 2D DG method. In this paper, a similar analysis for the
SV method on a triangular mesh is presented. The analysis shows that several of the SV partitions with small
Lebesgue constants are actually weakly unstable. Furthermore, stable third- and fourth-order accurate SV
schemes with lower dispersion and diffusion errors than previous SV schemes are proposed. The accuracy
of the schemes is tested on several test cases. In the first test case, we consider the linear advection of a 2D
Gaussian pulse. The second test case deals with the propagation of a 2D acoustic wave, which is governed
by the Euler equations. In the last test case, the Euler flow around a circular cylinder is computed. For this
test case, a high-order representation of the cylinder wall boundary is required to maintain the high-order
accuracy of the schemes. In Wang and Liu [7], such a high-order representation was achieved through the
use of isoparametric elements. In the present article, the methodology proposed by Krivodonova and Berger
[18] is used. For all test cases, the SV schemes proposed in this paper yielded smaller errors.

The rest of this article is organized as follows. A brief summary of the SV method is given in Section 2. In
Section 3, 2D SV partitions on a triangle are defined, after which a description of the methodology used for the
wave propagation analysis is given in Section 4. The dispersion and diffusion errors of the third- and fourth-
order SV schemes are then discussed in Sections 5 and 6. In Section 7 we deal with the numerical test cases,
before finally drawing conclusions in Section 8.

2. Spectral volume method

The spectral volume (SV) method can be applied to hyperbolic conservation laws (1)
oU
ot
þ ~r �~F ðUÞ ¼ SðUÞ ð1Þ
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The computational domain V is divided in NSV cells Vi, called spectral volumes, with volume jVij. Each of
these SVs Vi is further subdivided into control volumes (CV) Vi,j. Integrating (1) over such a CV and applying
the Gauss theorem gives
oUi;j

ot
jV i;jj ¼ �

Z
oV i;j

~F � d~sþ
Z

V i;j

S dV ¼ Ri;j ð2Þ
where jVi,jj is the volume of Vi,j, Ri,j is the residual corresponding to Vi,j and Ui;j is the CV average defined by
Ui;j �
1

jV i;jj

Z
V i;j

U dV ð3Þ
On a spectral volume Vi, a polynomial approximation of the solution is defined
UV i � uV i �
XNiðp;dÞ

j¼1

U i;jLi;j ð4Þ
Ni(p,d) is the number of CVs in the SV Vi, depending on the desired degree of the polynomial approximation p

and the number of spatial dimensions d. The polynomials Li,j associated to the CVs Vi,j are defined by
1

jV i;jj

Z
V i;j

Li;mdV ¼ djm ð5Þ
where djm is the Kronecker delta function. Eq. (5) ensures the following property of the polynomial
approximation
1

jV i;jj

Z
V i;j

uV i dV ¼ U i;j ð6Þ
With the polynomial approximation uV i , the flux integral and the source term integral in (2) can be approx-
imated to order p + 1, using Gauss quadrature. On the boundary between two SVs however, there are two
available values for the flux ~F , one from within each SV. Thus on these boundaries a suitable Riemann flux
~F R, for instance the Lax–Friedrichs flux, must be used. A more elaborate overview of the SV method can be
found in [1–6].

3. 2D spectral volume partitions

Fig. 1 shows three 2D SV partitions that correspond to, from left to right, a second-, a third- and a fourth-
order accurate SV scheme. The second-order SV partition has three CVs and is uniquely defined. A third-order

SV contains six CVs and the partition has two degrees of freedom, namely a3 ¼ jABj
jAEj and b3 ¼ jACj

jADj. The fourth-

order partition consists of 10 CVs and has 4 degrees of freedom. These are a4 ¼ jABj
jAGj, b4 ¼ jACj

jAFj, c4 ¼ jEFj
jAFj and
Fig. 1. Spectral volume partitions.
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d4 ¼ jADj
jAFj. The accuracy and stability properties strongly depend on the choice of these parameters. These prop-

erties will be analyzed in the following sections.

4. Wave propagation properties

In this section, a description of the methodology for the wave propagation analysis is given. A similar anal-
ysis for the DG method was done in [16]. Consider the 2D linear advection equation on a domain with
periodic boundary conditions:
ov
ot
þ ax

ov
ox
þ ay

ov
oy
¼ 0 ð7Þ

~a ¼ ax ay½ �s ¼ a cos w sin w½ �s ¼ a~1a ð8Þ
The vector~a is the wave propagation velocity and is defined by the cartesian components ax and ay, or by
the amplitude a and the direction, defined by the angle w. The initial solution is a harmonic plane wave, with
wave number k and orientation defined by the angle h:
vðx; y; 0Þ ¼ eIkðx cos hþy sin hÞ ð9Þ

where I is the complex number defined by

ffiffiffiffiffiffiffi
�1
p

. To (7), a (p + 1)th-order accurate SV method is applied, on a
mesh of which the generating pattern is shown in Fig. 2. This generating pattern consists of two triangular SVs
(SV1 and SV2). The real mesh is then formed by periodically repeating this pattern. It is completely defined by

the vectors ~B1 ¼ B1x B1y½ �s and ~B2 ¼ B2x B2y½ �s. The non-dimensional vectors ~B01 and ~B02 are obtained by

scaling with the length of~B1, denoted by DB, as follows:~B1 � DB~B01 and~B2 � DB~B02. On the boundary between
two SVs, the following Riemann flux is used:
~F RðvL; vRÞ �~1n ¼
~a �~1nðvL þ vRÞ

2
� u
j~a �~1njðvR � vLÞ

2
¼~a �

~1n þ uj~a �~1nj
2

vL þ~a �
~1n � uj~a �~1nj

2
vR ð10Þ
vL is the solution of the left cell on the face, vR the one of the right cell on the face. The normal to the face~1n

points into the right cell. u is an upwinding parameter, where u = 1 results in a simple upwind flux and u = 0
gives a central flux. After application of the SV method to (7), the set of Eq. (11) is found:
V 0DB2
X2Np

n¼1

Qm;n

d�vi;j;n

dt
þ aDB

X2Np

n¼1

M0
m;n�vi;j;n þ aDB

X2Np

n¼1

M�1
m;n�vi�1;j;n þ aDB

X2Np

n¼1

Mþ1
m;n�viþ1;j;n þ aDB

X2Np

n¼1

N�1
m;n�vi;j�1;n

þ aDB
X2Np

n¼1

Nþ1
m;n�vi;jþ1;n ¼ 0
Np = (p + 1)(p + 2)/2 is the number of CVs in each SV. The index m takes the values 1, . . ., 2Np. Indices i and j

are the generating pattern indices. The variables �vi;j;n for n = 1, . . ., Np are the CV-averaged values in the first
SV of the generating pattern (marked SV1 in Fig. 2), while the variables for n = Np + 1, . . ., 2Np correspond to
the CV-averaged values of the second SV (marked SV2). V 0DB2 is the area of the triangles and is given by
V 0DB2 ¼ j~B1 �~B2j=2. The matrices Qm,n, M0

m;n, M�1
m;n, Mþ1

m;n, N�1
m;n and Nþ1

m;n are a function of the wave propaga-
tion direction w and their definitions are included in Appendix A. The factor DB is used to make these matrices
and V 0 dimensionless. Substitution of the following expression of a harmonic wave:
Fig. 2. Generating pattern for the mesh.
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�vi;j;mðtÞ ¼ ~vmeI½kððiB1xþjB2xÞ cos hþðiB1yþjB2y Þ sin hÞ�xt� ð12Þ

into (11) yields
XNp

n¼1

�IeXV 0Qm;n þM0
m;n

h
þM�1

m;ne�IKðB0
1x cos hþB0

1y sin hÞ þMþ1
m;neþIKðB0

1x cos hþB0
1y sin hÞþN�1

m;ne�IKðB0
2x cos hþB0

2y sin hÞ

þNþ1
m;neþIKðB0

2x cos hþB0
2y sin hÞ

i
~vn ¼ 0 ð13Þ
with m = 1, . . ., 2Np. K = kDB is the non-dimensional wave number and jeXj ¼ xDB=a the non-dimensional
numerical frequency. (13) is a system of 2Np equations in the coefficients ~vn, which has a solution different from
zero only if the determinant of the matrix in the left hand side is equal to zero. This yields the numerical
dispersion relation:
det �IeXV 0QþM0
�

þM�1e�IKðB0
1x cos hþB0

1y sin hÞ þMþ1eþIKðB0
1x cos hþB0

1y sin hÞþN�1e�IKðB0
2x cos hþB0

2y sin hÞ

þNþ1eþIKðB0
2x cos hþB0

2y sin hÞ
�
¼ 0 ð14Þ
from which eX can be found. eX should be compared to the non-dimensional exact frequency X, which is given
by the exact dispersion relation X = Kcos(h � w). Expression (14) has 2Np solutions, corresponding to the
eigenmodes of the numerical system. The quantity �I~X is the so-called Fourier footprint R ¼ RRe þ IRIm

of the spatial discretization. The imaginary part RIm is a measure of the dispersive properties of the scheme,
whereas the real part RRe reflects the diffusive behaviour. In order for the scheme to be stable, RRe should be
non-positive for all K, h and w.

Consider a mesh built up of equilateral triangles as shown in Fig. 3. Such a mesh is obtained for the fol-
lowing choice for the dimensionless vectors ~B01 and ~B02:
~B01 ¼
1

0

� �
; ~B02 ¼

1
2ffiffi
3
p

2

 !
ð15Þ
Fig. 4 shows the solution of (14) as a function of the wave number K and for h ¼ w ¼ p
6
, for a second-order

SV scheme, marked ‘SV2’ in the remainder of this article, with an upwind Riemann flux, on the equilateral
triangle mesh. The choice h = w corresponds to a propagation direction parallel to the orientation of the plane
wave. The exact dispersion relation is given by X = K in this case. For this choice, the wave length in the prop-
agation direction is minimal, leading to the most severe test of the accuracy of the scheme. Because of this, w
will always be taken equal to h for accuracy tests in the remainder of the article. For h ¼ w ¼ p

6
, expression (14)

is periodical in K with a period equal to 4 pffiffi
3
p . This explains the wave number range in Fig. 4. It can be con-

cluded from the right figure that the scheme is stable for h ¼ w ¼ p
6
, since RRe is never positive. Three of the

modes can be readily interpreted, namely the modes marked by the plus sign (+), the square (h) and the circle
Fig. 3. Equilateral triangle mesh.



Fig. 4. Modes of the numerical dispersion relation for the second-order SV scheme with upwind Riemann flux, for h ¼ w ¼ p
6
, on an

equilateral triangle mesh.

Fig. 5. Dispersion and diffusion error as a function of the wave number, for the second-order SV scheme with upwind Riemann flux, for
h ¼ w ¼ p

6
, on an equilateral triangle mesh.

Fig. 6. Phase speed ðRIm=KÞ and dissipation rate ðRReÞ as a function of h(=w), for the second-order SV scheme with upwind Riemann
flux, for K = 0.25p, K = 0.50p and K = 0.80p, on an equilateral triangle mesh.
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(�). As was pointed out in [17], each mode is the dimensionless frequency corresponding to a wave number
K þ z 4ffiffi

3
p p, with z an integer number. Consequently, to get a clear picture of the wave propagation properties,

each mode should be shifted by a multiple of 4ffiffi
3
p p along the wave number axis. This is allowed because of the

periodicity of (14). By shifting the aforementioned modes in the appropriate way, one arrives at a plot like in
Fig. 5, where because of the symmetry (RReðKÞ ¼ RReð�KÞ and RImðKÞ ¼ �RImð�KÞ), the curves are only
shown for positive wave numbers K. It is seen that R follows the ideal value of IK closely for jKj < 1. In
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Fig. 6, the Fourier footprint is plotted as a function of the angle h(=w), for three different values of K. For the
mesh under consideration, the footprint is periodic in h with a period of p

3
. For small jKj, the dependence on h

is small, while for larger K, it is more significant. The scheme is the most accurate for angles h ¼ p
6
þ z p

3
and the

least accurate for h ¼ z p
3
.

5. Stability and accuracy of third-order SV schemes

In this section, four different third-order accurate SV schemes are analyzed. The first scheme was proposed
in [2], and is defined by a3 ¼ 1

4
and b3 ¼ 2

3
. It is marked ‘SV3W’ in the remainder of the article. Notice that for

the choice b3 ¼ 2
3
, the three faces in the middle of the SV disappear, which means that there is no direct cou-

pling between the three edge CVs (the three CVs that do not lie in the corner of the SV). The second scheme is
taken from Liu et al. [5] and corresponds to a3 ¼ 1

4
and b3 = a3. This scheme is labelled ‘SV3L’. The choice

b3 = a3 results in partitions where the corner CVs reduce to triangles. The third scheme that is considered
was obtained in [11], by using a systematic technique based on the Voronoi diagram and its variants. The
scheme is given by a3 = 0.1093621117 and b3 = 0.1730022492 and is marked ‘SV3C’. The last scheme under
consideration is a new one and is obtained for a3 ¼ 91

1000
and b3 ¼ 18

100
. It is included here because of its nice dis-

sipative and dispersive properties. It will be referred to as the ‘SV3P’-scheme (P for ‘Present’). The parameters
of these schemes have been summarized in Table 1. The Lebesgue constant iCPi has also been included for
each partition. The partitions are plotted in Fig. 7.
Table 1
Parameters of 2D third-order SV schemes

Scheme a3 b3 iCPi

SV3W 1
4

2
3 8.0000

SV3L 1
4

1
4 3.6000

SV3C 0.1093621117 0.1730022492 3.0630

SV3P 91
1000

18
100 3.0705
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Fig. 7. ‘SV3W’-partition (top–left), ‘SV3L’-partition (top–right), ‘SV3C’-partition (bottom–left) and ‘SV3P’-partition (bottom–right).
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In Fig. 8, the dispersive and diffusive behaviour of these schemes, when combined with an upwind Riemann
flux, is plotted, for h ¼ w ¼ p

6
and on an equilateral triangle mesh. A first remark that should be made here is

that the wave number period of the physically interpretable mode depends on the partition. For the ‘SV3W’-
partition, this period is 5 4pffiffi

3
p , whereas for the other partitions under consideration here, it is 4 4pffiffi

3
p . Notice that the

wave number range in Fig. 8 is half the period of the ‘SV3W’-scheme. Other periods are also possible, for
instance for a partition with a3 = 0.0075 and b3 = 2a3, the period is 3 4pffiffi

3
p .

In Fig. 8 it can be seen that the ‘SV3W’- and ‘SV3L’-scheme are weakly unstable, since RRe is positive for
certain values of K. It must be remarked that these schemes, if combined with a suitable time marching
scheme, can still yield stable solutions for a certain range of CFL-numbers. However, if the CFL-number
drops below a certain value, the solution will become unstable. Especially for nonlinear problems, where
the CFL-number varies over the computational domain, this could cause problems. The ‘SV3C’- and
‘SV3P’-partitions do yield stable schemes. Their Fourier footprint always has a non-positive real part, for
all values of the wave number K and the angles h and w.

Regarding the relative accuracy of the ‘SV3C’- and the ‘SV3P’-scheme, it can be stated that they have quite
comparable wave propagation properties. The dispersion and diffusion errors of the latter scheme are slightly
smaller for h ¼ w ¼ p

6
. In Fig. 9, for both schemes the dissipation rate and the phase speed have been plotted

versus h(=w), for K ¼ p
2

and K = p. The dissipation rate curves of the schemes are nearly indistinguishable.
The phase speed of the ‘SV3P’-scheme is significantly closer to the ideal value of 1 however. Notice the
negative peaks in the curves for both schemes at angles h � zp

3
, with z an integer number. This shows that
Fig. 8. Dispersion and diffusion error as a function of the wave number, for some third-order schemes with upwind Riemann flux, for
h ¼ w ¼ p

6
, on an equilateral triangle mesh.

Fig. 9. Phase speed ðRIm=KÞ and dissipation rate ðRReÞ as a function of h(=w), for two third-order SV schemes with upwind Riemann
flux, for K = 0.5p and K = p, on an equilateral triangle mesh.
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the schemes are less accurate for these values of h. The loss of accuracy is expected to be less for the ‘SV3P’-
scheme, since the negative peaks are less pronounced for this scheme.

6. Stability and accuracy of fourth-order SV schemes

Three fourth-order SV partitions are studied in this section. The first partition is defined by a4 ¼ 1
15

,
b4 = 2a4, d4 = b4 and c4 = a4. In this partition, the center CV is a triangle. Furthermore, the internal face
CD (see Fig. 1), as well as the other two similar faces, disappears, removing the direct coupling between three
pairs of CVs. This scheme was proposed in [2] and will be referred to as the ‘SV4W’-scheme. The second
fourth-order partition under consideration is defined by a4 = 0.0326228301, b4 = 0.0425080882,
d4 = 0.1562524902 and c4 = 0.0504398911. This partition was proposed by Chen in [11] and is marked
‘SV4C’. A new partition proposed here is defined by a4 = 0.078, b4 ¼ 4a4

3
, d4 ¼ 9a4

2
and c4 ¼ b4

2
. This partition

yields nice wave propagation properties and will be referred to as the ‘SV4P’-scheme. The parameters of
the schemes considered in this section are summarized in Table 2. The partitions are shown in Fig. 10.

Fig. 11 shows the Fourier footprint of the ‘SV4W’-scheme combined with an upwind Riemann flux. It is
seen that a small part of the Fourier footprint lies in the positive real half of the complex plain, showing that
the scheme is weakly unstable. Furthermore, we were not able to find a stable scheme using the three-
Table 2
Parameters of 2D fourth-order SV schemes

Scheme a4 b4 d4 c4 iCPi

SV4W 1
15

2
15

2
15

1
15 3.4448

SV4C 0.0326228301 0.042508082 0.1562524902 0.0504398911 3.2129
SV4P 78

1000
104

1000
351

1000
52

1000 4.2446
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Fig. 10. ‘SV4W’-partition (left), ‘SV4C’-partition (middle) and ‘SV4P’-partition (right).

Fig. 11. Fourier footprint of the ‘SV4W’-scheme and with upwind Riemann flux, on an equilateral triangle mesh.
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parameter partition that was considered in [5], which corresponds to the four-parameter partition described in
Section 3 where points C and D coincide (d4 = b4).

Now consider the ‘SV4C’- and the ‘SV4P’-schemes combined with an upwind Riemann flux. In Fig. 12 the
dispersion and diffusion errors for h ¼ w ¼ p

6
are shown as a function of the wave number K and in Fig. 13,
Fig. 12. Dispersion and diffusion error as a function of the wave number, for the fourth-order ‘SV4C’- and ‘SV4P’- schemes with upwind
Riemann flux, for h ¼ w ¼ p

6
, on an equilateral triangle mesh.

Fig. 13. Phase speed ðRIm=KÞ and dissipation rate ðRReÞ as a function of h(=w), for two fourth-order SV schemes with upwind Riemann
flux, for K = p and K = 1.5p, on an equilateral triangle mesh.

Fig. 14. Fourier footprint of the ‘SV4C’ (left) and the ‘SV4P’ (right) fourth-order SV scheme with upwind Riemann flux on an equilateral
triangle mesh.
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they are plotted versus the angle h(=w), for K = p and K ¼ 3p
2

. Again, the wave number period of the physi-
cally interpretable mode depends on the partition. For the ‘SV4C’-partition, the period is 4 4pffiffi

3
p , while for the

‘SV4P’-partition it is 5 4pffiffi
3
p . The ‘SV4P’-partition clearly yields a more accurate scheme than the ‘SV4C’-parti-

tion, as both the dispersive and the diffusive errors are significantly smaller. Furthermore, the Fourier foot-
print of the ‘SV4P’-scheme is much smaller than that of the ‘SV4C’-scheme, as is shown in Fig. 14.
Consequently, significantly larger time steps will be possible with the first. Finally, notice the Lebesgue con-
stant of the ‘SV4P’-partition in Table 2, which is significantly larger than that of the ‘SV4W’- and ‘SV4C’-
schemes. This shows that a smaller Lebesgue constant does not necessarily guarantee a more accurate or even
a stable scheme.

7. Numerical experiments

7.1. 2D linear advection of a Gaussian pulse

The first test case is a 2D linear advection problem. The equation to be solved is (7). The initial solution is a
2D Gaussian pulse with a half-width of 0.1 and is thus defined by the following expression:
Fig. 15
and Dt
uðx; y; 0Þ ¼ exp �ðx� x0Þ2 þ ðy � y0Þ
2

r2
0

 !
; r0 ¼ 0:1 ð16Þ
The coordinates x0 and y0 are the initial position of the maximum of the pulse. The spatial discretization is
done on an equilateral triangle mesh such as in Fig. 3. The mesh size is defined as the length of an equilateral
triangle (DB). All computations were done using an upwind Riemann flux. For time marching, a low storage
four-stage Runge–Kutta algorithm, see for example Lacor et al. [19], was used. This algorithm is fourth-order
accurate in time for linear problems.

The left plot in Fig. 15 shows the residual histories obtained with the third-order SV schemes that were ana-
lyzed in Section 5. In these computations, the advection speed a was equal to 1, the propagation angle h was p

2
,

the mesh size DB was 0.1 and the time step Dt was 0.005. Because of the symmetry in the mesh, the angle h ¼ p
2

is equivalent to the angle h ¼ p
6

that was considered in the analysis. It is clearly illustrated that the ‘SV3W’- and
the ‘SV3L’-schemes are unstable. Notice that the instability of the ‘SV3L’-scheme is very weak, since it takes
almost 5 · 105 iterations for the L2-norm of the residual to rise above 0.1. The residual histories corresponding
to the ‘SV3P’- and the ‘SV3C’-scheme show no sign of instability. The fact that they are nearly indistinguish-
able is in agreement with the very small difference between the diffusion curves of these schemes. In the right
plot of Fig. 15, residual histories obtained with the fourth-order SV schemes that were analyzed in Section 6
are shown, for the case with a = 1 and h = 0, DB = 0.1 and Dt = 0.001. It is obvious from this plot that the
. Residual history for the linear advection of a 2D Gaussian pulse, on a mesh with DB = 0.1. Third-order SV schemes, a = 1, h ¼ p
2

= 0.005 (left), fourth-order SV schemes, a = 1, h = 0 and Dt = 0.001 (right).
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‘SV4W’-scheme is unstable for this case. The other two fourth-order SV schemes do yield stable results. Notice
that the L2-norm of the residual corresponding to the ‘SV4C’-scheme decreases more rapidly than the one
corresponding to the ‘SV4P’-scheme, as is predicted by the diffusion errors of these schemes.

Next, a grid convergence study for the ‘SV2’-, ‘SV3P’-, ‘SV3C’, ‘SV4P’ and ‘SV4C’-schemes is presented.
Two different propagation directions were considered, corresponding to h = 0 and h ¼ p

2
. In both cases the

propagation speed a was equal to 1. The time step was equal to 0.001 for all computations. This time step
is sufficiently small to ensure that the error caused by the time integration is much smaller than the one caused
by the spatial discretization. The solution after 1000 time steps was computed, meaning that the Gaussian
pulse was convected over a distance equal to 1.

Table 3 lists the L1 and L1 errors obtained with the different schemes, for h = 0, as well as the observed
order of accuracy. One immediately notices that the expected order of accuracy is not achieved by any of
the schemes for this case. The second-order SV scheme attains only a first-order accuracy. The third- and
fourth-order SV schemes perform slightly better, attaining orders of accuracy that are significantly higher
than, respectively, two and three. A possible explanation for this phenomenon may be that for h = 0, the
rows of cells parallel to the propagation direction are uncoupled, since the fluxes between these rows are
zero. The results for h ¼ p

2
are listed in Table 4. The somewhat strange-looking values for the cell size in

this table are chosen to obtain an integer number of cells in an interval of length 1 in the direction of the
propagation. The cell sizes in Table 4 thus correspond to those in Table 3 times 2ffiffi

3
p . For this case, the

expected orders of accuracy are achieved with all the schemes under consideration. It is also seen from
Tables 3 and 4 that lower errors can be obtained with less degrees of freedom if higher-order schemes
are used.

Regarding the relative accuracy of the higher-order schemes (>2), the following is observed. For the
third-order accurate schemes and for h ¼ p

2
, there is very little difference in the errors obtained with the

‘SV3C’- and the ‘SV3P’-scheme, although the errors obtained with the first scheme are systematically
smaller. For h = 0, the ‘SV3P’-scheme performs better than the ‘SV3C’-scheme, as the error levels are
Table 3
Grid convergence study for the linear advection of a 2D Gaussian pulse, with a = 1 and h = 0

Scheme Cell size #DOF L1 error L1 order L1 error L1 order

SV2 0.20000 180 2.52e � 2 – 2.22e � 1 –
0.10000 720 2.00e � 2 0.33 3.58e � 1 –0.69
0.05000 2880 1.05e � 2 0.93 2.03e � 1 0.82
0.02500 11,520 5.04e � 3 1.06 9.87e � 2 1.04
0.01250 46,080 2.47e � 3 1.03 4.48e � 2 1.14
0.00625 184,320 1.24e � 3 0.97 2.13e � 2 1.04

SV3C 0.20000 360 1.67e � 2 – 3.95e � 1 –
0.10000 1440 6.32e � 3 1.40 1.92e � 1 1.04
0.05000 5760 1.36e � 3 2.21 5.14e � 2 1.90
0.02500 23,040 2.76e � 4 2.31 1.16e � 2 2.15
0.01250 92,160 6.29e � 5 2.13 2.51e � 3 2.21

SV3P 0.20000 360 1.65e � 2 – 3.88e � 1 –
0.10000 1440 6.07e � 3 1.45 1.83e � 1 1.08
0.05000 5760 1.26e � 3 2.27 4.55e � 2 2.01
0.02500 23,040 2.26e � 4 2.47 8.56e � 3 2.41
0.01250 92,160 4.74e � 5 2.26 1.64e � 3 2.39

SV4C 0.20000 600 1.12e � 2 – 2.20e � 1 –
0.10000 2400 1.92e � 3 2.55 5.32e � 2 2.05
0.05000 9600 1.66e � 4 3.53 6.56e � 3 3.02
0.02500 38,400 1.48e � 5 3.48 5.20e � 4 3.66

SV4P 0.20000 600 9.26e � 3 – 1.52e � 1 –
0.10000 2400 1.22e � 3 2.93 4.76e � 2 1.67
0.05000 9600 1.14e � 4 3.41 5.24e � 3 3.18
0.02500 38,400 1.03e � 5 3.47 4.17e � 4 3.65



Table 4
Grid convergence study for the linear advection of a 2D Gaussian pulse, with a = 1 and h ¼ p

2

Scheme cell size #DOF L1 error L1 order L1 error L1 order

SV2 0.28868 150 3.32e � 2 – 2.54e � 1 –
0.11547 600 1.97e � 2 0.57 4.08e � 1 �0.52
0.05774 2400 7.67e � 3 1.36 2.52e � 1 0.70
0.02887 9600 2.31e � 3 1.73 1.03e � 1 1.29
0.01443 38,400 6.06e � 4 1.93 2.96e � 2 1.80
0.00707 153,600 1.53e � 4 1.93 7.75e � 3 1.88

SV3C 0.28868 300 3.70e � 2 – 6.71e � 1 –
0.11547 1200 5.32e � 3 2.12 2.03e � 1 1.30
0.05774 4800 7.53e � 4 2.82 4.11e � 2 2.30
0.02887 19,200 9.43e � 5 3.00 5.52e � 3 2.90
0.01443 76,800 1.19e � 5 2.99 6.85e � 4 3.01

SV3P 0.28868 300 3.69e � 2 – .71e � 1 –
0.11547 1200 5.32e � 3 2.12 2.04e � 1 1.30
0.05774 4800 7.61e � 4 2.80 4.17e � 2 2.29
0.02887 19,200 9.64e � 5 2.98 5.61e � 3 2.89
0.01443 76,800 1.22e � 5 2.98 6.99e � 4 3.01

SV4C 0.28868 500 3.47e� 4 3.01
always significantly lower and the observed order of accuracy is higher. Regarding the fourth-order accu-
rate schemes, it can be concluded that the ‘SV4P’-scheme systematically yields lower error levels than the
‘SV4C’-scheme. As already mentioned, the ‘SV4P’-scheme has the additional advantage of a smaller Fou-
rier footprint, making it possible to use larger time steps. If the CFL-number is defined by r ¼ aDt

DB, then a
maximum CFL-number rmax of about 0.09 was found for the ‘SV4P’-scheme when combined with the
four-stage low storage Runge–Kutta scheme. For the ‘SV4C’-scheme, this upper limit is 0.04, which means
that the maximum time step is more than two times smaller than for the ‘SV4P’-scheme. These results were
found analytically and confirmed numerically.

7.2. 2D acoustic pulse

The second test case that was computed is a 2D acoustic pulse. The governing equations for this test case
are the 2D Euler equations, which are given in conservative form by
oQ
ot
þ oE

ox
þ oF

oy
¼ 0 ð17Þ
where Q is the vector of conservative variables and E and F are the inviscid flux vectors:
Q ¼

q

qu

qv

qE

8>>><>>>:
9>>>=>>>;; E ¼

qu

qu2 þ p

quv

uðqE þ pÞ

8>>><>>>:
9>>>=>>>;; F ¼

qv

quv

qv2 þ p

vðqE þ pÞ

8>>><>>>:
9>>>=>>>; ð18Þ
with q the mass density, u and v the velocity components and p the pressure. The total energy E is defined by
the following equation:
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E ¼ 1

c� 1

p
q
þ u2 þ v2

2
ð19Þ
In this definition, c is the ratio of specific heats cp and cv. It is set to a value of 1.4, corresponding to air. The
initial solution is an acoustic pulse with a Gaussian profile and is given by
p ¼ p1 1þ 0:001 exp �ðx� 0:5Þ2 þ ðy � 0:5Þ2

r2
0

 ! !
q ¼ q1 þ

p � p1
c2
1

u ¼ 0

v ¼ 0

ð20Þ
In (20), p1 and q1 are both set to 1, and r0, the halfwidth of the Gaussian profile, to 0.05. The ambient

sound speed c1 is given by
ffiffiffiffiffiffi
cp1
q1

q
. An exact solution of the linearized Euler equations (LEEs) for this acoustic

pulse is available. Since the acoustic disturbance is small (the acoustic pressure is 1/1000 of the ambient pres-
sure), this solution is a very good approximation for the exact solution of the Euler equations. The set of Eq.
(17) is discretized in space using the SV method combined with a Roe Flux Difference Splitting (FDS) Rie-
mann flux. The mesh is built up of equilateral triangles in such a way that the domain [0, 1] · [0,1] is com-
pletely covered. This results in a jagged boundary of the computational domain, but the solution is only
computed up to the time when the acoustic wave reaches the boundary of the domain [0, 1] · [0, 1], such that
the boundary conditions do not play a role. Such a mesh, with a mesh size of DB = 0.05, is shown in Fig. 16.
The integration in time is performed using the same four-stage low storage R–K scheme as for the previous
test case, with a time step of 0.001.

Figs. 17 and 18 show the pressure at t = 0.3 in, respectively, the slice x = 0.5 and the slice y = 0.5. The solu-
tions obtained with the ‘SV3C’- and ‘SV3P’-schemes are plotted in the left figures and those obtained with the
‘SV4C’- and ‘SV4P’-schemes in the right figures. The solutions were computed on two different meshes, one
with mesh size DB = 0.10 and one with mesh size DB = 0.05. The ‘SV3C’- and the ‘SV3P’-schemes yield hardly
distinguishable results. Only for the coarser mesh, in the slice x = 0.5, it can be seen that the maximum wave
amplitude is predicted a little better by the latter scheme. For the fourth-order SV schemes, a bigger difference
is observed between the two schemes. On the mesh with mesh size DB = 0.10, the ‘SV4P’-scheme yields a sig-
nificantly more accurate solution than the ‘SV4C’-scheme. On the finer mesh, the solution obtained with the
‘SV4P’-scheme is still more accurate, although this can hardly be seen on the figures, because in this case both
solutions lie almost on top of the exact solution. The advantage of using higher-order schemes is again obvi-
ous, since the ‘SV4P’-solution on the mesh with DB = 0.10 is almost as good as the third-order accurate solu-
tions on the mesh with DB = 0.05.
Fig. 16. Mesh for the acoustic pulse test case, with a mesh size of DB = 0.05.



Fig. 17. Comparison of pressure for the acoustic pulse at t = 0.3 in the slice x = 0.5 for the third- (left) and fourth-order (right) SV
schemes.

Fig. 18. Comparison of pressure for the acoustic pulse at t = 0.3 in the slice y = 0.5 for the third- (left) and fourth-order (right) SV
schemes.
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7.3. Euler flow at M = 0.38 around a circular cylinder

The last test case is the Euler flow at M = 0.38 over a cylinder. This test case is taken from Krivodonova
and Berger [18]. If one uses high-order schemes for problems with curved solid wall boundaries, a high-order
representation of these boundaries is needed as well. The most obvious way to do this is to use isoparametric
elements at these boundaries, as was done recently for the SV method in [7]. In this paper, an alternative
approach, that was proposed by Krivodonova and Berger in [18], is followed. In this approach, only
straight-sided elements are used. However, at a curved boundary, in the Gauss quadrature points, the real nor-
mals to the wall are used to impose zero flow in the normal direction. These real normals are reconstructed on
each boundary face using mesh information only, by approximating the real wall boundary on the face with a
circular arc. This procedure is completely analogous as for the discontinuous Galerkin method, and therefore
the reader is referred to [18]. The advantages of this method are that it is easy to implement and that it takes a
lot less computational time compared to using isoparametric elements.

Four O-grid meshes, consisting of 16 · 5, 32 · 9, 64 · 17 and 128 · 33 points, are considered. The first num-
ber refers to the number of points in the circumferential direction, the second is the number of concentric
circles in the mesh. The radii of these circles in the finest mesh are defined by the following expression:
rj ¼ r0 1þ 2p
128

Xj�1

k¼0

ak

 !
; j ¼ 0; . . . ; 32 ð21Þ



Fig. 19. Meshes with 16 · 5, 32 · 9, 64 · 17 and 128 · 33 points around the circular cylinder.
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The radius r0 of the cylinder is 0.5 and the parameter a has the value 1.1648336, such that the radius r32 of
the outer circle is 20. The coarser meshes are obtained by successively unrefining the mesh. In Fig. 19, the four
meshes around the cylinder are shown.

Table 5 lists the L2-norm of the entropy error, which is defined here as in [18]:
�ent ¼
p

p1

�
q

q1

� �c

� 1 ð22Þ
The observed rate of convergence of this entropy error is also included. The values between brackets
are the errors and convergence rates of the DG method of the same order, which were reported
in [18]. Again, the advantage of high-order schemes is clearly illustrated. Notice that the error levels
obtained with the SV schemes compare favorably with those obtained with the DG schemes. However,
the observed order of accuracy for the DG method is slightly higher for the range of meshes under
consideration.

When comparing the errors obtained with the third-order schemes, it is seen that the difference is quite
small. The ‘SV3C’-scheme yields a slightly smaller error on the three coarsest meshes. On the finest mesh how-
ever, the ‘SV3P’-scheme is more accurate. The expected order of accuracy of three is attained by both schemes.
Regarding the relative accuracy of the fourth-order schemes, it is clear that the ‘SV4P’-scheme is generally
more accurate. On all meshes but the coarsest, it yields a smaller entropy error than the ‘SV4C’-scheme.
Notice also that that the observed order of accuracy decreases as the mesh is refined, for both fourth-order
SV schemes. The same is observed for the fourth-order DG scheme. For the ‘SV4P’-scheme, the decrease is
much less significant than for the ‘SV4C’-scheme however.



Fig. 20. Mach contours under p-refinement on the 32 · 9 grid. Solution obtained with the ‘SV2’- (left), the ‘SV3P’- (middle) and the
‘SV4P’-scheme (right). DM = 0.038.

Fig. 21. Mach contours under h-refinement, obtained with the ‘SV2’-scheme. Solution on the 32 · 9 grid (left), the 64 · 17 grid (middle)
and the 128 · 33 (right) grid. DM = 0.038.

Table 5
Grid convergence study of the entropy error, for the Euler flow over a cylinder at M = 0.38

Scheme Mesh size #DOF L2-norm �ent Order

SV2 (DG2) 16 · 5 384 9.04e � 3 (5.12e � 2) – (–)
32 · 9 1536 1.58e � 3 (9.28e � 3) 2.51 (2.46)
64 · 17 6144 3.07e � 4 (1.42e � 3) 2.37 (2.71)
128 · 33 24,576 7.57e � 5 (2.09e � 4) 2.02 (2.76)

SV3C (DG3) 16 · 5 768 2.13e � 3 (6.87e � 3) – (–)
32 · 9 3072 2.21e � 4 (4.37e � 4) 3.26 (3.97)
64 · 17 12,288 2.63e � 5 (3.75e � 5) 3.07 (3.54)
128 · 33 49,152 3.34e � 6 (4.05e � 6) 2.98 (3.21)

SV3P (DG3) 16 · 5 768 2.15e � 3 (6.87e � 3) – (–)
32 · 9 3072 2.28e � 4 (4.37e � 4) 3.24 (3.97)
64 · 17 12,288 2.64e � 5 (3.75e � 5) 3.11 (3.54)
128 · 33 49,152 3.28e � 6 (4.05e � 6) 3.01 (3.21)

SV4C (DG4) 16 · 5 1280 3.55e � 4 (1.00e � 3) – (–)
32 · 9 5120 2.85e � 5 (5.41e � 5) 3.64 (4.21)
64 · 17 20,480 3.97e � 6 (3.55e � 6) 2.84 (3.93)
128 · 33 81,920 7.16e � 7 (2.43e � 7) 2.47 (3.87)

SV4P (DG4) 16 · 5 1280 3.65e � 4 (1.00e � 3) – (–)
32 · 9 5120 2.68e � 5 (5.41e � 5) 3.77 (4.21)
64 · 17 20,480 2.15e � 6 (3.55e � 6) 3.64 (3.93)
128 · 33 81,920 2.54e � 7 (2.43e � 7) 3.08 (3.87)

Values obtained with a DG method of the same order between brackets.
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The advantage of using high-order schemes is further illustrated in Figs. 20 and 21. The first figure
shows the Mach contours obtained with the ‘SV2’-, the ‘SV3P’- and the ‘SV4P’-scheme on the 32 · 9
mesh. In the second figure, the Mach contours obtained on the 32 · 9 mesh, the 64 · 17 mesh and the
128 · 33 mesh with the ‘SV2’-scheme are shown. Clearly, the ‘SV4P’-solution on the coarse mesh is better
than the ‘SV2’-solution on the finest mesh, although the last has almost five times more degrees of
freedom.
8. Conclusions

The accuracy and stability of the 2D spectral volume schemes in combination with an upwind
Riemann flux have been studied, based on an analysis of the wave propagation properties associated with
these schemes. These properties depend strongly on the partitioning of the spectral volume into
control volumes. Several schemes that have been used in the past and that were designed based on the
Lebesgue constant criterion suffer from a weak instability. New third- and fourth-order accurate
SV schemes with better wave propagation properties have been proposed. Especially, the fourth-order
SV scheme (‘SV4P’) shows an important improvement with respect to previously used schemes. Apart
from smaller dispersion and diffusion errors, it has the advantage of a small Fourier footprint and
consequently allows for larger time steps. To verify the wave propagation analysis, the linear
advection in two different directions with respect to the mesh of a 2D Gaussian pulse has been computed.
The numerical results confirm the analytical ones. The accuracy of the SV schemes was further
investigated by means of two more test cases: the propagation of a cylindrical (2D) acoustic wave and
the Euler flow at M = 0.38 around a circular cylinder. To maintain the high-order accuracy of the
schemes, the curved wall boundary in the latter test case was handled using the methodology proposed
by Krivodonova and Berger. For both test cases, the newly proposed third-order SV scheme yielded only
a small improvement. However, the new fourth-order accurate SV scheme did give much more accurate
results.
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Appendix A. Matrix definitions

In this appendix, the expressions for the matrices Q, M0, M�1, M+1, N�1 and N+1 from Section 4 are
given. The indices m and n CV indices and they take the values m,n = 1, . . ., Np. The indices i and j run
over the two SVs in the generating pattern. They take the values 1 and 2. Furthermore, the following
variables are defined. V 0m is the dimensionless volume of the CV with index m (there is no index for
the SV to which it belongs because this dimensionless volume is the same for all SVs). S0;int

i;m is the part

of the boundary surrounding CV m in SV i, that does not belong to the boundary of SV i. S0;lef
i;m , S0;rig

i;m ,

S0;low
i;m and S0;upp

i;m are the parts of the boundary surrounding CV m in SV i, that belong to respectively
the left, right, lower and upper boundary of the generating pattern. S0;con

i;m is the part of the boundary sur-
rounding CV m within SV i, that belongs to the boundary between SV 1 and SV 2. The normals to these
boundaries are always the normals pointing out of the CV. Also, local coordinates ~n ¼ n g½ �s are defined
as follows:
x ¼ DBn

y ¼ DBg
ðA:1Þ
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The matrices are then given by
QNpði�1Þþm;Npðj�1Þþn ¼ dmndij
V 0m
V 0

ðA:2Þ

M0
Npði�1Þþm;Npðj�1Þþn

¼ dij

Z
S0;int

i;m

Lj;nð~nÞð~1a �~1nÞdsþ di1dj1

Z
S0;con

1;m

L1;nð~nÞ
~1a �~1n þ uj~1a �~1nj

2

 !
ds

þ di1dj2

Z
S0;con

1;m

L2;nð~nÞ
~1a �~1n � uj~1a �~1nj

2

 !
dsþ di2dj2

Z
S0;con

2;m

L2;nð~nÞ
~1a �~1n þ uj~1a �~1nj

2

 !
ds

þ di2dj1

Z
S0;con

2;m

L1;nð~nÞ
~1a �~1n � uj~1a �~1nj

2

 !
dsþ di1dj1

Z
S0;lef

1;m

L1;nð~nÞ
~1a �~1n þ uj~1a �~1nj

2

 !
ds

þ di2dj2

Z
S0;rig

2;m

L2;nð~nÞ
~1a �~1n þ uj~1a �~1nj

2

 !
dsþ di1dj1

Z
S0;low

1;m

L1;nð~nÞ
~1a �~1n þ uj~1a �~1nj

2

 !
ds

þ di2dj2

Z
S0;upp

2;m

L2;nð~nÞ
~1a �~1n þ uj~1a �~1nj

2

 !
ds ðA:3Þ

M�1
Npði�1Þþm;Npðj�1Þþn ¼ di1dj2

Z
Slef

1;m

L2;nð~nþ~B1Þ
~1a �~1n � uj~1a �~1nj

2

 !
ds ðA:4Þ

Mþ1
Npði�1Þþm;Npðj�1Þþn ¼ di2dj1

Z
Srig

2;m

L1;nð~n�~B1Þ
~1a �~1n � uj~1a �~1nj

2

 !
ds ðA:5Þ

N�1
Npði�1Þþm;Npðj�1Þþn ¼ di1dj2

Z
Slow

1;m

L2;nð~nþ~B2Þ
~1a �~1n � uj~1a �~1nj

2

 !
ds ðA:6Þ

Nþ1
Npði�1Þþm;Npðj�1Þþn ¼ di2dj1

Z
Supp

2;m

L1;nð~n�~B2Þ
~1a �~1n � uj~1a �~1nj

2

 !
ds ðA:7Þ
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